Chapter 2 Reasoning and Proof

Section 5 Proving Statements about Segments

GOAL 1: Properties of Congruent Segments

A true statement that follows as a result of other true statements is called a theorem. All theorems must be proved. You can prove a theorem using a two-column proof. A two-column proof has numbered statements and reasons that show the logical order of an argument

THEOREM

THEOREM 2.1 Properties of Segment Congruence

Segment congruence is reflexive, symmetric, and transitive. Here are some examples:

REFLEXIVE For any segment AB, $\overline{AB} \cong \overline{AB}$.

SYMMETRIC If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.

TRANSITIVE If $\overline{AB} \cong \overline{CD}$, and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$.

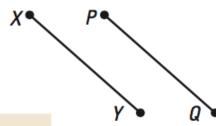
Example 1: Symmetric Property of Segment Congruence

*need to address LENGTHS in addition to the congruence

You can prove the Symmetric Property of Segment Congruence as follows.

Given: PQ ≅ XY

Prove: $XY \cong PQ$



Statements	Reasons	, •	u •
1. $\overline{PQ} \cong \overline{XY}$	1. Given		
2. PQ = XY	2. Definition of congruent segments		
3. XY = PQ	3. Symmetric property of equality		
4. $\overline{XY} \cong \overline{PQ}$	4. Definition of congruent segments		

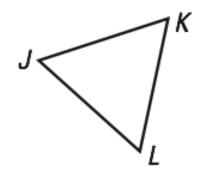
*whenever you go from congruence to equality OR equality to congruence REASON -> DEFINITION OF CONGRUENT segments/angles

A proof can be written in paragraph form, called paragraph proof. Here is a paragraph proof for the Symmetric Property of Segment Congruence.

Paragraph Proof You are given that PQ \cong XY. By the definition of congruent segments, PQ = XY. By the symmetric property of equality, XY = PQ. Therefore, by the definition of congruent segments, it follows that $\overline{XY} \cong \overline{PQ}$.

GOAL 2: Using Congruence of Segments

Example 2: Using Congruence

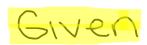


Use the diagram and the given information to complete the missing steps and reasons in the proof.

GIVEN
$$LK = 5$$
, $JK = 5$, $\overline{JK} \cong \overline{JL}$

Statements	Reasons
1. <u>a.</u> <u>L</u> K = 5	1. Given
2. <u>b.</u>) < = 5	2. Given
\rightarrow 3. $LK = JK$	3. Transitive property of equality (SUBSTITUTION)
\bigcirc 4. $\overline{LK}\cong \overline{JK}$	4. <u>c.</u> Def. of \cong Segments
$\emptyset 5. \overline{JK} \cong \overline{JL}$	5. Given
> 6. <u>d.</u> LK≅JL	6. Transitive Property of Congruence

Example 3: Using Segment Relationships



In the diagram, Q is the midpoint of PR. Show that PQ and QR are each equal to ½PR.

Statements	Reasons
1. Q is the midpoint of \overline{PR} .	1. Given
PQ = QR	2. Definition of midpoint
3. $PQ + QR = PR$ 4. $PQ + PQ = PR$ 5. $2 \cdot PQ = PR$	3. Segment Addition Postulate
	4. Substitution property of equality
	5. Distributive property (SIMPHY) C.L.T.
$6. \ \underline{PQ} = \frac{1}{2}PR$	6. Division property of equality
7. $QR = \frac{1}{2}PR$	7. Substitution property of equality